Data-driven Distributionally Robust Polynomial Optimization
نویسندگان
چکیده
We consider robust optimization for polynomial optimization problems where the uncertainty set is a set of candidate probability density functions. This set is a ball around a density function estimated from data samples, i.e., it is data-driven and random. Polynomial optimization problems are inherently hard due to nonconvex objectives and constraints. However, we show that by employing polynomial and histogram density estimates, we can introduce robustness with respect to distributional uncertainty sets without making the problem harder. We show that the optimum to the distributionally robust problem is the limit of a sequence of tractable semidefinite programming relaxations. We also give finite-sample consistency guarantees for the data-driven uncertainty sets. Finally, we apply our model and solution method in a water network optimization problem.
منابع مشابه
On the polynomial solvability of distributionally robust k-sum optimization
In this paper, we define a distributionally robust k-sum optimization problem as the problem of finding a solution that minimizes the worst-case expected sum of up to the k largest costs of the elements in the solution. The costs are random with a joint probability distribution that is not completely specified but rather assumed to be known to lie in a set of probability distributions. For k = ...
متن کاملRobust sample average approximation
Sample average approximation (SAA) is a widely popular approach to data-driven decisionmaking under uncertainty. Under mild assumptions, SAA is both tractable and enjoys strong asymptotic performance guarantees. Similar guarantees, however, do not typically hold in finite samples. In this paper, we propose a modification of SAA, which we term Robust SAA, which retains SAA’s tractability and asy...
متن کاملRobust SAA Dimitris
Abstract Sample average approximation (SAA) is a widely popular approach to data-driven decisionmaking under uncertainty. Under mild assumptions, SAA is both tractable and enjoys strong asymptotic performance guarantees. Similar guarantees, however, do not typically hold in finite samples. In this paper, we propose a modification of SAA, which we term Robust SAA, which retains SAA’s tractabilit...
متن کاملData-driven Distributionally Robust Optimization Using the Wasserstein Metric: Performance Guarantees and Tractable Reformulations
We consider stochastic programs where the distribution of the uncertain parameters is only observable through a finite training dataset. Using the Wasserstein metric, we construct a ball in the space of (multivariate and non-discrete) probability distributions centered at the uniform distribution on the training samples, and we seek decisions that perform best in view of the worst-case distribu...
متن کاملStochastic Optimal Power Flow Based on Data-Driven Distributionally Robust Optimization
We propose a data-driven method to solve a stochastic optimal power flow (OPF) problem based on limited information about forecast error distributions. The objective is to determine power schedules for controllable devices in a power network to balance operation cost and conditional valueat-risk (CVaR) of device and network constraint violations. These decisions include scheduled power output a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2013